

233/3 - CHEMISTRY (PRACTICAL)
 Nov. 2017 - 214 hours

Name
Index Number \qquad
Candidate's Signature \qquad Date \qquad

Instructions to candidates

(a) Write your name and index number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) Answer all the questions in the spaces provided in the question paper.
(d) You are not allowed to start working with the apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
(e) All working MUST be clearly shown where necessary.
(f) KNEC mathematical tables and silent electronic calculators may be used.
(g) This paper consists of 8 printed pages.
(h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
Candidates should answer the questions in English.

For Examiner's Use Only		
Question	Maximum Score	Candidate's Score
$\mathbf{1}$	19	
$\mathbf{2}$	12	
$\mathbf{3}$	9	

© 2017 The Kenya National Examinations Council

1. You are provided with:

- Solution A, 0.5 M copper(II) sulphate
- Solid B_{1}, metal B_{1} powder
- Solid B_{2}, Iron powder
- Solution C, 0.02 M acidified potassium manganate(VII)

You are required to determine the:

- Enthalpy change for the displacement reaction between metal B_{1} and copper(II) sulphate.
- Mass of iron that reacts with copper(II) sulphate in the displacement reaction.

PROCEDURE I

(a) (i) Using a pipette and a pipette filler, place $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{A} into a 100 m plastic beaker. Allow to stand for about 1 minute and then measure the temperatur of the solution. Record the reading in Table 1 as the initial temperature. Add al of solid B_{1} to the solution. Stir the mixture carefully with the thermometer an measure the highest temperature reached. This will take about 5 minutes. Recor the reading in Table 1 as maximum temperature reached.

Table 1

Maximum temperature reached $\left({ }^{\circ} \mathrm{C}\right)$	$=0.0$
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.0
Change in temperature, $\Delta \mathrm{T}_{1}\left({ }^{\circ} \mathrm{C}\right)$	10.0

(ii) Calculate the:

I number of moles of copper(II) sulphate used.
\qquad
\qquad
\qquad
II enthalpy change for the reaction of metal B_{1} with one mole of copper(II) sulphate.
(Assume that for the mixture, specific heat capacity $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ and density $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$)
(1 mark)
\qquad
\qquad
\qquad
\qquad
(b) Repeat procedure I, (a) (i) with all of metal B_{2} (iron powder) in place of metal B_{1}. The maximum temperature is reached after about 8 minutes. Record the temperature readings in Table 2. Retain the mixture for use in PROCEDURE II.

Table 2

Maximum temperature reached $\left({ }^{\circ} \mathrm{C}\right)$	$7 \cdot 0$
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	7.0
Change in temperature, $\Delta \mathrm{T}_{2}\left({ }^{\circ} \mathrm{C}\right)$	7

(c) Compare the changes in temperature ΔT_{1} and ΔT_{2} and comment on the differences.
\qquad
\qquad
\qquad

PROCEDURE II

(i) Fill a burette with solution \mathbf{C}.
(ii) Filter the mixture obtained in procedure I (b) into a 250 ml volumetric flask. Wash the residue with distilled water and add into the flask. Add more distilled water to make up to the mark. Label this as solution \mathbf{B}_{2}.
(iii) Using a pipette and a pipette filler, place $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B}_{2} into a 250 ml conical flask. Titrate solution \mathbf{B}_{2} with solution \mathbf{C} until a permanent pink colour just appears. Record the readings in Table 3.

Repeat step (iii) and complete Table 3.
(d) Table 3

	I	II	III
Final burette reading	5.7	5.6	6.7
Initial burette reading	0.0	$0 \cdot 0$	$0 \cdot 0$
Volume of solution \mathbf{C} used, cm^{3}	6.7	$6 \cdot 8$	6.7

(e) Calculate the average volume of solution C used.
(f) The equation for the reaction between manganate(VII) and iron(II) ions is:

$$
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

Calculate the number of moles of:
(i) potassium manganate(VII) used.
\qquad
\qquad
\qquad
(ii) iron (II) ions in $25.0 \mathrm{~cm}^{3}$ solution B
\qquad
\qquad
\qquad
(iii) iron that reacted with copper(II) sulphate.
\qquad
\qquad
\qquad
(g) Determine the mass of iron that reacted. $(\mathrm{RAM}$ of $\mathrm{Fe}=55.8)$
\qquad
\qquad
\qquad
\qquad
2. You are provided with:

- Solid K
- Aqueous ammonia
- Aqueous sodium sulphate
- Dilute nitric(V) acid
- Wooden splint

Solid \mathbf{K} is suspected to be lead(II) carbonate.
(a) From the reagents provided, select and describe three tests that could be carried out consecutively to confirm if solid \mathbf{K} is lead(II) carbonate. Write the tests and expected observations in the places provided.
(i)

(ii)

Test 2	Expected Observations
(1 mark)	

(iii)

Test 3	Expected Observations
(1 mark)	

(b) Carry out the tests described in (a) using solid \mathbf{K} and record the observations and inferences in the spaces provided.
(i) Test 1

Observations	Inferences
$(1 / 2$ mark $)$	

(ii) Test 2

Observations	Inferences
(1 mark)	

(iii) Test 3

Observations	Inferences
(1 mark)	

3. You are provided with an organic compound solid M. Carry out the following tests. Record the observations and inferences in the spaces provided.
(a) Place all of solid \mathbf{M} in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water and shake. Retain the solution for use in procedure (b) (i), (ii) and (iii).

Observations	Inferences
(1 mark)	

(b) Use about $2 \mathrm{~cm}^{3}$ portions of the mixture in a test tube for tests (i), (ii) and (iii).
(i) To the first portion, add all the solid sodium carbonate provided.

Observations	Inferences	
	s.	
(1 mark)		

(ii) To the second portion, add two drops of acidified potassium manganate(VII) and warm the mixture.

Observations	Inferences
$(1$ mark $)$	
	$(2$ marks $)$

(iii) To the third portion, add about $2 \mathrm{~cm}^{3}$ of acidified potassium dichromate(VI). Heat the mixture to boiling and allow to stand for about 2 minutes.

Observations	Inferences
	-
	(1 mark)

THIS IS THE LAST PRINTED PAGE.
Kenya Certificate of Secondary Education, 2017

