CHEMISTRY MARKING SCHEME K.C.S.E. 1995 PAPER 233/1

- x-2, 8, 3, $\sqrt{(1mks)}$ Y-2, 8 6 $\sqrt{(1mks)}$ 1. a)

 - $X_2Y_3 \sqrt{OR Al_2 S_3 (1mk)}$ b)
- The mixture would turn brown due to excess $Br_{2(g)}/H$ + ions removes OH- ions from the 2. mixture / equilibrium shifts to the left/observation not there BUT equilibrium shift to the left/ more Br formed for observation (2mks)

3.	1 mole CaCO3 2 moles of HCL Therefore $0.1(^{1}/_{2})$ mole CaO3 0.2 Mole ($^{1}/_{2}$) CaCO3 = 40 + 12 + 48 = 100g ($^{1}/_{2}$) Therefore 15g Ca CO3 = 15 = 0.15Moles 100g Excess moles 0.15 - 0.05 ($^{1}/_{2}$)	
	Excess mass= $(0.05) \times 100(\frac{1}{2}) = 5g$	(3mks)
4.	 a) II because it requires little soap to lather b) III has temporary (¹/₂) hardness, which is removed by boiling (¹/₂) 	(2mks) (1mk)
5	a) sisal/ Cotton/ wool/ silk /jule/hemp/fur/hair	(1mk)
	b) They are stronger than natural fibres/OR are not easily affected by che	
	longer /durable/ can be produced easily in a large scale therefore cheaper (Re	
	bonds)	(1mk)
6.	a) Pass the mixture through H2SO4 which absorbs D then collect by dow	
	delivery/pass the mixture though NaoH(aq) which absorb D and then	
	downward delivery (upward displacement)	(2mks)
	b) Ammonia $(\frac{1}{2})$ – Gas- D reacts with the acid $(\frac{1}{2})$ / basic/ is less dense than air.	(1 mk)
7	II Because pure substances have sharp MP and BP as shown by the flat	· · · ·
/	curve II. (accept systematic)	(2mks)
8.	a) $2H_{2}sO_4$	(21113)
0.	b) Insoluble in water/slightly soluble in water	(1 mk)
	To ensure that the air that occupied the apparatus initially is expected	()
	(reject impurities)	(1 mk)
	9. When circuit is completed bulb lights $(\frac{1}{2})$ brown substance $(\frac{1}{2})$ form	med grey
	(1/2) substance formed on cathode; because PbBr2 acts as an electroly	te (1/2)/free
	/mobile ($\frac{1}{2}$) ions; lead ions gain electrons to form pb($\frac{1}{2}$) (Lead) and	l loses
	electrons to form (¹ / ₂) Bromine (Br)	
	(Equations show ions current flow)	(3mks)
10.	a) To remove oxide coating which could inhibit reaction	(1 mk)
1.1	b) ORP	(1 1)
11.	a) addition $CH CH (CH (c)) + CH (c) = \sum_{i=1}^{n} CH CH (c) CH (c)$	(1mk)
	b) $CH_3CH = CH_2(g) + Cl_2(g) \longrightarrow CH3 CHCICH2 CL (g)$	
	OR C.H.+ Cl	(1 ml)
	C_3H_6+Cl	$_{2}$ (1 mk)

Hydrogen forms compounds by losing one electron like group I elements or by gaining 12. one electron like group VII element /Hydrogen has one electron in outermost shell.

(2mks)

Al(s) + 6H+ (aq) 2A13+ (aq) +
$$\Box$$
 (g)
A1(s) +6OH-(aq) \rightarrow A1 (OH) \Box (aq) + 2H \Box O (g)
13. a) Wood ash is basic/ alkaline and would therefore react with aluminium
Utensils/amphoteric/ 2A(s) + 6H
+ (aq) 2A13 + (aq)) + 3 H₂ (g)
b) It is strong (¹/₂) and not easily corroded (¹/₂) / Does not rust (1mk)
14. a) (C3H6O)n = 116
(3 x 12 + 6 + 16)n =116 (¹/₂) Molecular formulae = 2(C \Box H \Box O)
58n = 116 (¹/₂) = C₃H₁₂O_{2(1/2)}
N = 116 = 2(¹/₂) (2mks)
58
b)Percentage of Carbon = 12x6x 1000(¹/₂) = 62.07 (¹/₂) Range (62.05 - 62)
116
OR

$$\frac{3 \times 12}{58} \times 100 (1/2) = 62.07 (1/2) \text{ (mark consequently)}$$

Cool the mixture to a temperature below -196° C to form a liquid then start warming, 15. Nitrogen distils off a gas at – 1960 (cool first) (2mks)

16.a)

17.

18.

19.

	•				
Alkaline	Formula	Heat of combustion (\triangle Hc)kjm	nol ⁻¹		
Methane	CH4	- 890			
Ethane	C ₂ H	- 1560			
Propane	C_3H_8	- 2220			
Butane	C_4H_{10}	- $2870 - 2880(^{1}/_{2})$			
	(Co	rrect answer only –ve sign)			
	(awa	ard full mark if figure is not \pm)			
A	222	0 - 1560 = 660			
2	156	0 - 890 = 670			
ð	222	0 + 650 = 2870			
	(Accept any value	2870)Any calculation	(1mk)		
b) \triangle Hc is an exothermic reaction.					
I – Molten sult	ohur				
II – Superheate	ed water / water.				
2HCl (aq) + Zi	$\operatorname{ncl} \Box(\operatorname{aq}) + \operatorname{H2}(\operatorname{g}) $	(-1/2) states)			
b) $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$ (Not L) (⁻¹ / ₂ state)					
drogen, because it i	is lighter/ less dense	er / diffuses faster (2mks)			
	Methane Ethane Propane Butane \triangle Hc is an exo I – Molten sulp II – Superheate 2HCl (aq) + Zu 2H2 (g) + O2 (g)	Methane CH_4 Ethane C_2H Propane C_3H_8 Butane C_4H_{10} (Condent colspan="2">(Condent colspan="2")(Condent colspan="2")(Accept any value 2)(Accept any value 2) </td <td>MethaneCH4-890EthaneC2H-1560PropaneC3H8-2220ButaneC4H10-2870 - 2880($^{1}/_{2}$)(Correct answer only -ve sign) (award full mark if figure is not ±) 2220 - 1560 = 660 1560 - 890 = 670 2220 + 650 = 2870 (Accept any value 2870)Any calculation \triangleHc is an exothermic reaction. I - Molten sulphur II = Superheated water / water. 2HCl (aq) + Zncl \Box(aq) + H2 (g) ($^{-1}/_2$) states)</td>	MethaneCH4-890EthaneC2H-1560PropaneC3H8-2220ButaneC4H10-2870 - 2880($^{1}/_{2}$)(Correct answer only -ve sign) (award full mark if figure is not ±) 2220 - 1560 = 660 1560 - 890 = 670 2220 + 650 = 2870 (Accept any value 2870)Any calculation \triangle Hc is an exothermic reaction. I - Molten sulphur II = Superheated water / water. 2HCl (aq) + Zncl \Box (aq) + H2 (g) ($^{-1}/_2$) states)		

(1mk)

where the stranger of the stra

CHEMISTRY MARKING SCHEME PAPER 233 / 2 K.C.S.E 1995

1.	a)	K and	N because they are in the	e same group OR loses 2 electrons/same number o	r
			ons sins the outer energy		(2mk)
	b)	L_2O_2	OR L ₂ O		(1mk)
	c)	L, beca	ause it has 7 electrons in	its outermost energy level	(2mk)
				bigger than atomic radius so its tendency to donate	· ,
			ons is high		
	(e)		e	d. Across the period ionic radius decrease due to in	crease
			-	harge of N is greater than M. L gains electrons to f	
			's increase in repulsion of		(2mks)
			1		
2.	(a)	(i) Liqu	uid P – concentrated sulp	ohuric acid	(1 mk)
		Soli	id Q- Aluminium (III) ch	loride OR AICI ₃	(1 mk)
		(ii) An	hydrous calcium chlorid	e or fused calcium or lumps of calcium chloride	(1 mk)
				s red because the $HCI(g)$ that does not react with the	ne
			num dissolves in the wate		(2mks)
	(b)	(i) NH	$H_4 + HCI(g) \rightarrow NH_4 CI(g)$	$g) \qquad \bigcirc \qquad \frown \qquad \frown \qquad \bigcirc$	(1 mk)
		(ii) HC	$CI(g) + NH_4(g) \rightarrow NH_4C$	$I(g)(\frac{1}{2})$ Penalize $\frac{1}{2}$ for wrong states)	
	Moles of HCL = $200^{1/2} = 0.00833^{1/2}$ moles HCl				
			24000		
			0.00833 moles HCI = 0	.00833 moles NH4CI	
			$NH_4CI = 14 + 4 + 3.35$	$= 53.5 g^{1/2}$	
			(0.00833	B) $(53.5) = 0.446$ g (answers must be to 3dp)	
			$CH_3OH + 3O \rightarrow$	CO_2 + Heat (penalize $\frac{1}{2}$ if wrong unit for answers)
				(3 mks)	
3.		(a)	$2CH_3OH(g) + 3O_2(g) -$		
		(b)	(i) $22.98 - 22.11 = 0.87$		
			$R.F.M CH_3 OH = 12 +$		
				2718 (¹ / ₂) moles OR 0.02719 moles	
			Temp rise $= 27$		
			(ii) Heat change = $\triangle H$ =	$= 500 \text{ x } 7 (\frac{1}{2}) \text{ x } 4.2 = 14700 \text{ j} (\frac{1}{2}) \text{ if unit missing}$)
				(2 mks)	
			(iii) $0.027 \text{ moles} = 1470$		
			1 mole =	$= [14700] \text{ x } [1] = 544.4 \text{ kjmol}^{-1}$	
				[0.027] [1000]	
			5	$[14700] = 540.7 \text{ kjmol}^{-1}$	
			N.	[0.022718]	
		(c) Thi	is value is lower than the	theoretical value because some of the heat is lost	

(c) This value is lower than the theoretical value because some of the heat is lost to the surrounding because apparatus is not shielded. Some more heat is also lost to the apparatus. Incomplete combustion of methanol (2 mks)

(d) Acid rain may from due to presence of SO₂ (g) and CO₂ (g) dumping of the waste like the slag prevent vegetation growth large gullies left after the ore is excavated destroys the environment (Do not accept presence of heat) (1 mk)

(iv) Bi (v) Ac	ddition of anhydrous or white CuSo4 copper (II) sulphate which turns blu ater or cobalt chloride paper which turns pink(1)(i) One of the salts in R is not soluble in water because a residue is form	mk)		
(c)	(ii) CO_3^{2-} because CO_2 (g) is produced on addition of acid (iii) $Pb^{2-}(aq)$ Zinc nitrate Lead carbonate (11)	mk)		
 6. (a) (i) Bitumen, it has highest B.P (2 mks) (ii) Fractional distillation. During the distillation petrol would distil off at 175° and diesel could distil at 350°C (2 mks) (iii) Each component is mixture of hydrocarbons which have different boiling points 				
	v) Methane $CH_4(g)$ Ethane C_2H_6 Propane C_3H_8 Butane C_4H_{10}			
	urning it in limited amount of air will produce carbon monoxide which i	nks)		
7 (a)		uced to mk) mk)		
	II Moles of $NH_3 = \frac{320}{24000} = 0.133$ 2 moles of $NH_3 = 3$ moles CuO Moles pf CuO - $\frac{320}{2} \times \frac{1/2}{2} \times \frac{3}{2}$ $\frac{1}{5} = 0.02$ moles RFM OF CuO = $63.5 + 16 = 79.5$ Mass of CuO= $0.02 \times 79.5g = 1.59g$	(3mks)		
(v)	The excess ammonia from the reaction dissolves in the water in the beat ammonium hydroxide which is a weak alkali or base of pH about 10.	· ,		
(b) (c)	The burning splint would be extinguished Because it is cheaper and ammonia is made from nitrogen	(1 mk) (1 mk)		