CHEMISTRY MARKING SCHEME K.C.S.E. 1995
 PAPER 233/1

1. a) $\mathrm{x}-2,8,3, \sqrt{ }(1 \mathrm{mks})$

Y- 2, $86 \sqrt{ }$ (1 mks)
b) $\quad \mathrm{X}_{2} \mathrm{Y}_{3} \sqrt{ } \mathrm{OR} \mathrm{Al}_{2} \mathrm{~S}_{3}(1 \mathrm{mk})$
2. The mixture would turn brown due to excess $\mathrm{Br}_{2(\mathrm{~g}) /} \mathrm{H}+$ ions removes OH - ions from the mixture / equilibrium shifts to the left/observation not there BUT equilibrium shift to the left/ more $\mathrm{Br} \square$ formed for observation
3. 1 mole CaCO 32 moles of HCL

Therefore $0.1(1 / 2)$ mole CaO3 0.2 Mole ($1 / 2$)
$\mathrm{CaCO} 3=40+12+48=100 \mathrm{~g}(1 / 2)$
Therefore $15 \mathrm{~g} \mathrm{CaCO3}=\quad 15=0.15$ Moles 100 g
Excess moles $0.15-0.05(1 / 2)$
Excess mass $=(0.05) \times 100(1 / 2)=5 \mathrm{~g}$
4. a) II because it requires little soap to lather
b) III has temporary ($1 / 2$) hardness, which is removed by boiling ($1 / 2$) (1mk)

5 a) sisal/ Cotton/ wool/ silk /jule/hemp/fur/hair (1mk)
b) They are stronger than natural fibres/OR are not easily affected by chemicals/lasts longer /durable/ can be produced easily in a large scale therefore cheaper (Reject. Strong bonds)
(1mk)
6. a) Pass the mixture through H 2 SO 4 which absorbs D then collect by downward delivery/pass the mixture though $\mathrm{NaoH}(\mathrm{aq})$ which absorb D and then collect by downward delivery (upward displacement)
(2mks)
b) Ammonia ($1 / 2$) -Gas- Dreacts with the acid ($1 / 2$)/basic/ is less denser / lighter than air.
(1 mk)
7 II Because pure substances have sharp MP and BP as shown by the flat regions of curve II. (accept systematic)
8. a) $2 \mathrm{H}_{2} \mathrm{SO}_{4}$
b) Insoluble in water/slightly soluble in water
(1 mk)
To ensure that the air that occupied the apparatus initially is expected (reject impurities)
9. When circuit is completed bulb lights ($1 / 2$) brown substance ($1 / 2$) formed grey ($1 / 2$) substance formed on cathode; because PbBr 2 acts as an electrolyte ($1 / 2$)/free /mobile ($1 / 2$) ions; lead ions gain electrons to form $\mathrm{pb}(1 / 2)$ (Lead) and loses electrons to form ($1 / 2$) Bromine (Br)
(Equations show ions current flow)
10. a) To remove oxide coating which could inhibit reaction
b) ORP
11. a) addition
(1mk)
b) $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{CH} 3 \mathrm{CHCICH} 2 \mathrm{CL}(\mathrm{g})$

$$
\begin{align*}
& \mathrm{OR} \\
& \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Cl}_{2} \tag{1mk}
\end{align*}
$$

12. Hydrogen forms compounds by losing one electron like group I elements or by gaining one electron like group VII element/Hydrogen has one electron in outermost shell.
(2mks)
$\mathrm{Al}(\mathrm{s})+6 \mathrm{H}+(\mathrm{aq}) \quad 2 \mathrm{~A} 13+(\mathrm{aq})+\square(\mathrm{g})$
$\mathrm{A} 1(\mathrm{~s})+6 \mathrm{OH}-(\mathrm{aq}) \longrightarrow \mathrm{A} 1(\mathrm{OH}) \square(\mathrm{aq})+2 \mathrm{H} \square \mathrm{O}(\mathrm{g})$
13. a) Wood ash is basic/ alkaline and would therefore react with aluminium Utensils/amphoteric/ $2 \mathrm{~A}(\mathrm{~s})+6 \mathrm{H}$ $+(\mathrm{aq}) 2 \mathrm{~A} 13+(\mathrm{aq}))+3 \mathrm{H}_{2}(\mathrm{~g})$
(2mks)
b) It is strong $(1 / 2)$ and not easily corroded ($1 / 2$) / Does not rust (1 mk)
14. a) $(\mathrm{C} 3 \mathrm{H} 6 \mathrm{O}) \mathrm{n}=116$
$(3 \times 12+6+16) \mathrm{n}=116(1 / 2)$ Molecular formulae $=2(\mathrm{C} \square \mathrm{H} \square \mathrm{O})$
 58
b)Percentage of Carbon $=\underline{12 \times 6 x} \quad 1000(1 / 2)=62.07(1 / 2)$ Range $(62.05-62)$ 116

OR

$\frac{3 \times 12}{58} \times 100(1 / 2)=62.07(1 / 2)$ (mark consequently)
58
15. Cool the mixture to a temperature below $-196^{\circ} \mathrm{C}$ to form a liquid then start warming, Nitrogen distils off a gas at -1960 (cool first)
16.a)

Alkaline	Formula	Heat of combustion $\left(\triangle \mathrm{Hc}^{2} \mathrm{kjmol}^{-1}\right.$
Methane	CH_{4}	-890
Ethane	$\mathrm{C}_{2} \mathrm{H}$	-1560
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	-2220
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	$-2870-2880\left(\frac{1}{1} / 2\right)$

(Correct answer only -ve sign)
(award full mark if figure is not \pm)

$$
\begin{aligned}
& 2220-1560=660 \\
& 1560-890=670 \\
& 2220+650=2870
\end{aligned}
$$

(Accept any value 2870)Any calculation (1mk)
b) $\triangle \mathrm{Hc}$ is an exothermic reaction.
(1mk)
17. a) I-Molten sulphur
b) II - Superheated water / water.
18. a) $\quad 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zncl} \square(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g})\left(\left(^{-1} / 2\right)\right.$ states $)$
b) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}\left(\mathrm{~g} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(\mathrm{Not} \mathrm{L}) \quad(-1 / 2\right.$ state $)$
19. Hydrogen, because it is lighter/ less denser / diffuses faster (2mks)
20.

21. W because its solubility decreases with increase in temperature
22.
a) i) $\mathrm{NO}-3: \mathrm{O} 3-=-6$. . $\mathrm{N}=+5(+5) \quad$ (don't mark formula)
ii) NO
$\mathrm{O}=02 . \mathrm{N}=+2$
(1mk)
(1mk)
b) Reduction $(1 / 2)$ because the nitrogen ion in $\mathrm{NO} \square$ gains 3 electrons $(1 / 2)$ to form the nitrogen in NO.
23. The chloride form ions in water which conduct electric current. NO ions are formed in methylbenzene /chloride exists in methylbenzene as molecules.
(2mks)
24. A gas with a smell of rotten eggs is formed $\mathrm{H}_{2} \mathrm{~S}^{\circ}$ gas is formed / A greenish solution is formed? Effervescence / A gas is produced / Black solid dissolves.
25. Dissolve the potassium sulphate $(1 / 2)$ in water, dissolve $(1 / 2)$ the lead carbonate in the nitric acid, mix the two solutions $(1 / 2)$ and filter ($1 / 2$) off the lead sulphate precipitate// Dissolve lead carbonate in nitric acid add solid pbSO_{4} and filter off ($\left.\max ^{1} 1 / 2\right) / /$ Dissolve this in HNO_{3} and add solid pbCO_{3} and filter off the precipitate.
26. Enthalpy of neutralization between $\mathrm{CH}_{3} \mathrm{CaOH}_{(\text {aq })}$ and $\mathrm{NaOH}_{(\text {aq })}$ is lower than that between $\mathrm{HCl}_{(\text {aq) }}$ and NaOH because $\mathrm{CH}_{3} \mathrm{CaOH}_{(\text {aq) }}$ is a weak acid which does not dissociate fully in water thus some of heat produced is used for dissociation fully dissociated and partially dissociated.
27. $\mathrm{Ca}(\mathrm{OH}) 2(\mathrm{aq})$ forms white precipitate (1/2) with CO 2 Can be observed $\mathrm{NaOH}(1 / 2)(\mathrm{aq})$ does not form a precipitate.
(1mk)
28. a) Structural formula

b) $\quad 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{(1)}+2 \mathrm{~K}_{(\mathrm{s})} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OK}^{+}(\mathrm{I})+\mathrm{H}_{2}(\mathrm{~g})$
$2 \mathrm{~S}, \mathrm{H} 9 \mathrm{OH}+2 \mathrm{~K} \longrightarrow 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}+\mathrm{H}_{2} \quad$ (Imk)
29. a) Yield would increase $(1 / 2)$ since $\triangle \mathrm{H}$ us position/ thus increase in temperature shift the equilibrium to the right. Since $\triangle H$ is positive $(1 / 2)(1 \mathrm{mk})$
No effect ($1 / 2$) volume on the left ($1 / 2$) is the same as on the right//moles on left same as moles on the right. (1 mk)
30. a) 100 g of $\mathrm{Pa} \longrightarrow 50 \mathrm{~g}$ if $\mathrm{Pa} \longrightarrow 25 \mathrm{~g} \mathrm{~Pa} \longrightarrow 12.5(\mathrm{~g})$

$$
\begin{equation*}
\ldots 3 t 1 / 2=81(1 / 2) t=1 / 2=27 \text { days }(1 / 2) \tag{2mks}
\end{equation*}
$$

b) Mass number - 233 (1/2)
Atomic number - 92(1/2)

CHEMISTRY MARKING SCHEME
 PAPER 233 / 2 K.C.S.E 1995

1. a) K and N because they are in the same group OR loses 2 electrons/same number or electrons sins the outer energy level
b) $\mathrm{L}_{2} \mathrm{O}_{2} \mathrm{OR} \mathrm{L} \mathrm{L}_{2} \mathrm{O}$
c) L, because it has 7 electrons in its outermost energy level
d) M , Because its ionic radius is bigger than atomic radius so its tendency to donate its electrons is high
(e) M and N arc in the same period. Across the period ionic radius decrease due to increase in nuclear charge OR nuclear charge of N is greater than M . L gains electrons to form L . There's increase in repulsion of electrons
2. (a) (i) Liquid P - concentrated sulphuric acid

Solid Q- Aluminium (III) chloride OR AICI_{3}
(ii) Anhydrous calcium chloride or fused calcium or lumps of calcium chloride (1 mk)
(iii) The blue litmus paper turns red because the $\mathrm{HCl}(\mathrm{g})$ that does not react with the aluminum dissolves in the water making it acidic.
(b) (i) $\mathrm{NH}_{4}+\mathrm{HCI}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{g})$
(1 mk)
(ii) $\mathrm{HCI}(\mathrm{g})+\mathrm{NH}_{4}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{g})(1 / 2) \quad$ Penalize $1 / 2$ for wrong states)

Moles of $\mathrm{HCL}=200^{1 / 2}=0.00833^{1 / 2}$ moles HCD 24000
0.00833 moles $\mathrm{HCI}=0.00833$ moles $\mathrm{NH}_{4} \mathrm{CI}$
$\mathrm{NH}_{4} \mathrm{CI}=14+4+3.35=53.5 \mathrm{~g}^{\circ} 1 / 2$
$(0.00833)(53.5)=0.446 \mathrm{~g}$ (answers must be to 3 dp) $\mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O} \rightarrow \mathrm{CO}_{2}+$ Heat (penalize $1 / 2$ if wrong unit for answers) (3 mks)
3. (a) $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(b) (i) $22.98-22.11=0.87 \mathrm{~g}$ methanol
R.F.M CH3 $\mathrm{OH}=12+3+17=32(1 / 2)$
$0.87(1 / 2)=0.02718(1 / 2)$ moles OR 0.02719 moles
Temp rise $=27-20=7(1 / 2) \quad(2 \mathrm{mks})$
(ii) Heat change $=\triangle H=500 \times 7(1 / 2) \times 4.2=14700 \mathrm{j}(1 / 2)$ if unit missing $)$
(2 mks)
(iii) 0.027 moles $=14700 \mathrm{~J}$

$$
1 \text { mole }=[14700] \times[1]=544.4 \mathrm{kjmol}^{-1}
$$

[0.027] [1000]

$$
[14700]=540.7 \mathrm{kjmol}^{-1}
$$

$$
[0.022718]
$$

(c) This value is lower than the theoretical value because some of the heat is lost to the surrounding because apparatus is not shielded. Some more heat is also lost to the apparatus. Incomplete combustion of methanol

(v) Reduction - oxidation (Redox) reaction because $\mathrm{Cu}_{2} \mathrm{O}$ is reduced to Cu while coke to $\mathrm{CO}_{2}(\mathrm{~g})$

(c) 1 mole of $\mathrm{CuFeS}=1$ mole Cu
$210 \mathrm{~kg} \mathrm{Cu}=\mathrm{OR} \underline{210} \times \underline{183.5} \times 100$ or mass Cu in cores $=\underline{810 \times 63.6}=$

$$
\overline{63.5} \cdot \overline{810} \quad 183.5
$$

$$
\% \mathrm{Cu}=\frac{210}{280} \times 100=74.9 \%
$$

$$
3.3 \text { moles of } \mathrm{Cu}(\mathrm{~s})=3.3 \text { moles } \mathrm{CuFeS} 2
$$

$$
\mathrm{CuFeS}_{2}=63.5+56+64=183.5 \mathrm{~g}
$$

$$
=183.5 \times 3.3=605.6 \times 10^{3} \mathrm{~g}
$$

$$
\text { Purity }=\frac{605.6 \times 1000 \times 100}{}=74.75 \%
$$

$$
810 \times 1000
$$

(d) Acid rain may from due to presence of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ dumping of the waste like the slag prevent vegetation growth large gullies left after the ore is excavated destroys the environment (Do not accept presence of heat) (1 mk)
5. (a)

(iii) $\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{NH}^{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{4}\right.$
(iv) Brown coloured gas OR reddish brown (1 mk)
(v) Addition of anhydrous or white CuSO_{4} copper (II) sulphate which turns blue in presence of water or cobalt chloride paper which turns pink
(b) (i) One of the salts in R is not soluble in water because a residue is formed on addition of water
(ii) $\mathrm{CO}_{3}{ }^{2-}$ because $\mathrm{CO}_{2}(\mathrm{~g})$ is produced on addition of acid
(2 mks)
(iii) Pb^{2-} (aq)
(c) Zinc nitrate
(1 mk)
Lead carbonate
6. (a) (i) Bitumen, it has highest B.P
(ii) Fractional distillation. During the distillation petrol would distil off at 175° and diesel could distil at $350^{\circ} \mathrm{C}$
(2 mks)
(iii) Each component is mixture of hydrocarbons which have different boiling points
(iv) Methane $\mathrm{CH}_{4}(\mathrm{~g})$

Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$
Propane $\mathrm{C}_{3} \mathrm{H}_{8}$
Butane $\mathrm{C}_{4} \mathrm{H}_{10}$
(b) Burning it in limited amount of air will produce carbon monoxide which is poisonous
(c) Manufacture of tar used in tarmac/ sealing of roofs
(2 mks)
(1mk)
7 (a) (i) Liquid L is water
(ii) Black copper (II) oxide changes to reddish brown because it is reduced to copper by ammonia
(iii) $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}$ (s) $\quad 3 \mathrm{Cu}$ (s) $+\mathrm{N}_{2}$ (g) $+\mathrm{H}_{2} \mathrm{O}$ (I)
(1 mk)
(iv) I 2 moles $\mathrm{NH}_{3} \Rightarrow$ Imole N2

$$
320 \mathrm{~cm}^{3} \mathrm{NH}_{3} \Rightarrow \frac{320}{2}=160 \mathrm{~cm}^{3}
$$

II Moles of $\mathrm{NH}_{3}=\underline{320}=0.133$
2 moles of $\mathrm{NH}_{3}=3$ moles CuO

$$
\text { Moles pf CuO }-320 \times 1 / 2 \times 3 \quad 1 / 5=0.02 \text { moles }
$$

$$
\mathrm{RFM} \mathrm{OF} \overline{\mathrm{CuO}}=63.5+16=79.5
$$

$$
\text { Mass of } \mathrm{CuO}=0.02 \times 79.5 \mathrm{~g}=1.59 \mathrm{~g}
$$

(v) The excess ammonia from the reaction dissolves in the water in the beaker to form ammonium hydroxide which is a weak alkali or base of pH about 10 . (2 mks)
(b) The burning splint would be extinguished
(c) Because it is cheaper and ammonia is made from nitrogen

